Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
iScience ; 26(2): 105926, 2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36866045

RESUMO

This article provides a stocktake of the adaptation literature between 2013 and 2019 to better understand how adaptation responses affect risk under the particularly challenging conditions of compound climate events. Across 39 countries, 45 response types to compound hazards display anticipatory (9%), reactive (33%), and maladaptive (41%) characteristics, as well as hard (18%) and soft (68%) limits to adaptation. Low income, food insecurity, and access to institutional resources and finance are the most prominent of 23 vulnerabilities observed to negatively affect responses. Risk for food security, health, livelihoods, and economic outputs are commonly associated risks driving responses. Narrow geographical and sectoral foci of the literature highlight important conceptual, sectoral, and geographic areas for future research to better understand the way responses shape risk. When responses are integrated within climate risk assessment and management, there is greater potential to advance the urgency of response and safeguards for the most vulnerable.

2.
Philos Trans R Soc Lond B Biol Sci ; 377(1857): 20210394, 2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35757884

RESUMO

Temperature overshoot pathways entail exceeding a specified global warming level (e.g. 1.5°C or 2°C) followed by a decline in warming, achieved through anthropogenically enhanced CO2 removal from the atmosphere. However, risks to biodiversity from temperature overshoot pathways are poorly described. Here, we explore biodiversity risks from overshoot by synthesizing existing knowledge and quantifying the dynamics of exposure and de-exposure to potentially dangerous temperatures for more than 30 000 species for a 2°C overshoot scenario. Our results suggest that climate risk to biodiversity from temperature overshoot pathways will arrive suddenly, but decrease only gradually. Peak exposure for biodiversity occurs around the same time as peak global warming, but the rate of de-exposure lags behind the temperature decline. While the global overshoot period lasts around 60 years, the duration of elevated exposure of marine and terrestrial biodiversity is substantially longer (around 100 and 130 years, respectively), with some ecological communities never returning to pre-overshoot exposure levels. Key biodiversity impacts may be irreversible and reliance on widespread CO2 removal to reduce warming poses additional risks to biodiversity through altered land use. Avoiding any temperature overshoot must be a priority for reducing biodiversity risks from climate change, followed by limiting the magnitude and duration of any overshoot. More integrated models that include direct and indirect impacts from overshoot are needed to inform policy. This article is part of the theme issue 'Ecological complexity and the biosphere: the next 30 years'.


Assuntos
Biodiversidade , Dióxido de Carbono , Mudança Climática , Aquecimento Global , Temperatura
3.
Ecology ; 103(2): e03580, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34727372

RESUMO

Ants, an ecologically successful and numerically dominant group of animals, play key ecological roles as soil engineers, predators, nutrient recyclers, and regulators of plant growth and reproduction in most terrestrial ecosystems. Further, ants are widely used as bioindicators of the ecological impact of land use. We gathered information of ant species in the Atlantic Forest of South America. The ATLANTIC ANTS data set, which is part of the ATLANTIC SERIES data papers, is a compilation of ant records from collections (18,713 records), unpublished data (29,651 records), and published sources (106,910 records; 1,059 references), including papers, theses, dissertations, and book chapters published from 1886 to 2020. In total, the data set contains 153,818 ant records from 7,636 study locations in the Atlantic Forest, representing 10 subfamilies, 99 genera, 1,114 ant species identified with updated taxonomic certainty, and 2,235 morphospecies codes. Our data set reflects the heterogeneity in ant records, which include ants sampled at the beginning of the taxonomic history of myrmecology (the 19th and 20th centuries) and more recent ant surveys designed to address specific questions in ecology and biology. The data set can be used by researchers to develop strategies to deal with different macroecological and region-wide questions, focusing on assemblages, species occurrences, and distribution patterns. Furthermore, the data can be used to assess the consequences of changes in land use in the Atlantic Forest on different ecological processes. No copyright restrictions apply to the use of this data set, but we request that authors cite this data paper when using these data in publications or teaching events.


Assuntos
Ecossistema , Florestas , Animais , Biodiversidade , Solo , América do Sul
4.
Evolution ; 72(10): 2257-2266, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30101971

RESUMO

In a previous paper, we used simulations and empirical data to show that BAMM (Bayesian Analysis of Macroevolutionary Mixtures) can give misleading estimates of rates and rate shifts. In simulations, BAMM underestimated rate shifts across every tree analyzed, and assigned incorrect rates to most clades in most trees. In empirical analyses, BAMM behaved as expected from simulations, and assigned different rates to clades when clades were analyzed alone versus across the tree (i.e., with rate heterogeneity). Rabosky recently criticized our paper, focusing primarily on the idea that our comparison of BAMM to another approach (method-of-moments estimators of Magallón and Sanderson, or MS estimators) was unfair to BAMM. Here, we provide further evidence that BAMM gives misleading rate estimates in empirical studies. We then describe how Rabosky's rown method comparisons were either acknowledged as being problematic or were described inaccurately (to favor BAMM). Finally, we show that the MS estimators can perform well when rates vary over time, despite untested assertions that they require constant rates to be accurate. Many other methods are available for analyzing diversification rates: we argue that BAMM should be avoided for estimating both diversification rates and rate shifts.


Assuntos
Biodiversidade , Especiação Genética , Teorema de Bayes , Filogenia
5.
Evolution ; 72(1): 39-53, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29055133

RESUMO

Estimates of diversification rates are invaluable for many macroevolutionary studies. Recently, an approach called BAMM (Bayesian Analysis of Macro-evolutionary Mixtures) has become widely used for estimating diversification rates and rate shifts. At the same time, several articles have concluded that estimates of net diversification rates from the method-of-moments (MS) estimators are inaccurate. Yet, no studies have compared the ability of these two methods to accurately estimate clade diversification rates. Here, we use simulations to compare their performance. We found that BAMM yielded relatively weak relationships between true and estimated diversification rates. This occurred because BAMM underestimated the number of rates shifts across each tree, and assigned high rates to small clades with low rates. Errors in both speciation and extinction rates contributed to these errors, showing that using BAMM to estimate only speciation rates is also problematic. In contrast, the MS estimators (particularly using stem group ages), yielded stronger relationships between true and estimated diversification rates, by roughly twofold. Furthermore, the MS approach remained relatively accurate when diversification rates were heterogeneous within clades, despite the widespread assumption that it requires constant rates within clades. Overall, we caution that BAMM may be problematic for estimating diversification rates and rate shifts.


Assuntos
Teorema de Bayes , Simulação por Computador , Especiação Genética , Animais , Filogenia , Plantas/genética
6.
Proc Biol Sci ; 284(1858)2017 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-28679723

RESUMO

Despite the remarkable diversity found in squamate reptiles, most of their species tend to be found in warm/dry environments, suggesting that climatic requirements played a crucial role in their diversification, yet little is known about the evolution of their climatic niches. In this study, we integrate climatic information associated with the geographical distribution of 1882 squamate species and their phylogenetic relationships to investigate the tempo and mode of climatic niche evolution in squamates, both over time and among lineages. We found that changes in climatic niche dynamics were pronounced over their recent squamate evolutionary history, and we identified extensive evidence for rate heterogeneity in squamate climatic niche evolution. Most rate shifts involved accelerations, particularly over the past 50 Myr. Most squamates occupy similar regions of the climatic niche space, with only a few lineages diversifying into colder and humid climatic conditions. The changes from arid to mesic conditions in some regions of the globe may have provided opportunities for climatic niche evolution, although most lineages tended to remain near their ancestral niche. Variation in rates of climatic niche evolution seems common, particularly in response to the availability of new climatic conditions over evolutionary time.


Assuntos
Evolução Biológica , Clima , Ecossistema , Répteis/classificação , Animais , Filogenia , Filogeografia
7.
Sci Adv ; 3(1): e1600946, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28116351

RESUMO

Nonhuman primates, our closest biological relatives, play important roles in the livelihoods, cultures, and religions of many societies and offer unique insights into human evolution, biology, behavior, and the threat of emerging diseases. They are an essential component of tropical biodiversity, contributing to forest regeneration and ecosystem health. Current information shows the existence of 504 species in 79 genera distributed in the Neotropics, mainland Africa, Madagascar, and Asia. Alarmingly, ~60% of primate species are now threatened with extinction and ~75% have declining populations. This situation is the result of escalating anthropogenic pressures on primates and their habitats-mainly global and local market demands, leading to extensive habitat loss through the expansion of industrial agriculture, large-scale cattle ranching, logging, oil and gas drilling, mining, dam building, and the construction of new road networks in primate range regions. Other important drivers are increased bushmeat hunting and the illegal trade of primates as pets and primate body parts, along with emerging threats, such as climate change and anthroponotic diseases. Often, these pressures act in synergy, exacerbating primate population declines. Given that primate range regions overlap extensively with a large, and rapidly growing, human population characterized by high levels of poverty, global attention is needed immediately to reverse the looming risk of primate extinctions and to attend to local human needs in sustainable ways. Raising global scientific and public awareness of the plight of the world's primates and the costs of their loss to ecosystem health and human society is imperative.


Assuntos
Cercopithecidae , Ecossistema , Extinção Biológica , Animais
8.
PeerJ ; 4: e2490, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27761312

RESUMO

Mountains of the Brazilian Atlantic Forest can act as islands of cold and wet climate, leading to the isolation and speciation of species with low dispersal capacity, such as the toadlet species of the genus Brachycephalus. This genus is composed primarily by diurnal species, with miniaturized body sizes (<2.5 cm), inhabiting microhabitats in the leaf litter of montane forests. Still, little is known about the geographical distribution, altitudinal range, and ecological limits of most Brachycephalus species. In this study, we review the available data on the geographical and altitudinal distribution of Brachycephalus based on occurrence records compiled from literature and museums, both for the genus as a whole and separately for the three recently proposed groups of species (ephippium, didactylus, and pernix). The final ensemble dataset comprised 333 records, 120 localities, 28 described species, and six undescribed ones. Species were recorded in six relief units, the richest of which being the Serra do Mar, with 30 species. When the Serra do Mar is subdivided into three subunits, Northern, Central and Southern Serra do Mar, the number of species increase from north to the south, with records of six, nine, and 16 species, respectively. We were able to estimate the extent of occurrence of nearly half of the described species, and the resulting estimates indicate that many of them show remarkably small ranges, some of which less than 50 ha. Brachycephalus species are present from sea level to roughly 1,900 m a.s.l., with the highest richness being found between 751 and 1,000 m a.s.l. (21 spp.). The species with the broadest altitudinal range were B. didactylus (1,075 m) and Brachycephalus sp. 1 (1,035 m), both in the didactylus group, and B. ephippium (1,050 m), of the ephippium group. The broadest altitudinal amplitude for species of the pernix group was recorded for B. brunneus (535 m). The lowest altitudinal records for the pernix group were at 845 m a.s.l. in the state of Paraná and at 455 m a.s.l. in the state of Santa Catarina. The altitudinal occurrence in the pernixspecies group seems to decrease southward. Syntopy between species is also reviewed.

9.
Am J Primatol ; 76(6): 551-62, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24346860

RESUMO

Understanding how biodiversity will respond to climate change is a major challenge in conservation science. Climatic changes are likely to impose serious threats to many organisms, especially those with narrow distribution ranges, small populations and low dispersal capacity. Lion tamarins (Leontopithecus spp.) are endangered primates endemic to Brazilian Atlantic Forest (BAF), and all four living species are typical examples of these aggravating conditions. Here, we integrate ecological niche modeling and GIS-based information about BAF remnants and protected areas to estimate the exposure (i.e., the extent of climate change predicted to be experienced by a species) of current suitable habitats to climate change for 2050 and 2080, and to evaluate the efficacy of existing reserves to protect climatically suitable areas. Niche models were built using Maxent and then projected onto seven global circulation models derived from the A1B climatic scenario. According to our projections, the occurrence area of L. caissara will be little exposed to climate change. Western populations of L. chrysomelas could be potentially exposed, while climatically suitable habitats will be maintained only in part of the eastern region. Protected areas that presently harbor large populations of L. chrysopygus and L. rosalia will not retain climatic suitability by 2080. Monitoring trends of exposed populations and protecting areas predicted to hold suitable conditions should be prioritized. Given the potential exposure of key lion tamarin populations, we stress the importance of conducting additional studies to assess other aspects of their vulnerability (i.e., sensitivity to climate and adaptive capacity) and, therefore, to provide a more solid framework for future management decisions in the context of climate change.


Assuntos
Mudança Climática , Ecossistema , Leontopithecus , Modelos Teóricos , Animais , Brasil , Sistemas de Informação Geográfica
10.
PLoS One ; 8(12): e83684, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24376729

RESUMO

Despite considerable interest in recent years on species distribution modeling and phylogenetic niche conservatism, little is known about the way in which climatic niches change over evolutionary time. This knowledge is of major importance to understand the mechanisms underlying limits of species distributions, as well as to infer how different lineages might be affected by anthropogenic climate change. In this study we investigate the tempo and mode climatic niche evolution in New World monkeys (Platyrrhini). Climatic conditions found throughout the distribution of 140 primate species were investigated using a principal component analysis, which indicated that mean temperature (particularly during the winter) is the most important climatic correlate of platyrrhine geographical distributions, accounting for nearly half of the interspecific variation in climatic niches. The effects of precipitation were associated with the second principal component, particularly with respect to the dry season. When models of trait evolution were fit to scores on each of the principal component axes, significant phylogenetic signal was detected for PC1 scores, but not for PC2 scores. Interestingly, although all platyrrhine families occupied comparable regions of climatic space, some aotid species such as Aotus lemurinus, A. jorgehernandezi, and A. miconax show highly distinctive climatic niches associated with drier conditions (high PC2 scores). This shift might have been made possible by their nocturnal habits, which could serve as an exaptation that allow them to be less constrained by humidity during the night. These results underscore the usefulness of investigating explicitly the tempo and mode of climatic niche evolution and its role in determining species distributions.


Assuntos
Evolução Biológica , Clima , Platirrinos/fisiologia , Animais , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...